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A new and efficient method is proposed for obtaining atomic charges from 
molecular wave functions, preserving both total charge and dipole moment. 
The method is independent of the type of wave function (SCF, CI) and does 
not refer explicitly to the basis set used, nor to integral approximations 
(e.g. CNDO) applied. The method takes very little time and is better than 
Mulliken's analysis as a generator of electric potentials. 
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1. Introduction 

In many fields of theoretical chemistry and molecular physics, the concept of 
atomic charge plays an important role. Atomic charges are used for analysing 
molecular wave functions, as index for the reactivity of atoms in molecules, and 
as sources for molecular electrostatic potentials [1]. In contrast to the properties 
one is trying to represent (charge distribution, electric potential), atomic charge 
is not a well defined quantum mechanical observable. 

The most widely used method for obtaining atomic charges has been Mulliken's 
population analysis [2]. Although its results reflect trends which are chemically 
realistic and compatible with concepts like electronegativity, they have hardly 
any physical meaning. This is caused by the fact that a physically not well defined 
p rope r ty - the  atomic gross charge- i s  obtained from an even less physical 
concept: the assignment of orbital charge to a particular atom, only because the 
corresponding orbitals are centred on that atom, and the arbitrary reallocation 
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of orbital overlap populations. L6wdin [3] and Jug [4] suggested the reallocation 
of overlap populations in a way preserving the bond dipole moment, or at least 
its component along the axis between the atoms involved. Although this involves 
little more effort than a standard Mulliken analysis, this method has never 
become popular. Presumably, because one faces the problem of dealing with 
the other (one-centre) contributions to the dipole moment. Claverie [5] discussed 
this problem, and suggested to assign charges to the nearest neighbours of any 
atom carrying a local dipole, such that this dipole is preserved as well as possible. 

The preservation of the molecular dipole and higher moments is, obviously, of 
paramount importance if one wants to compute, in a simple way, molecular 
electric potentials. Other, more physical (or less basis set dependent) methods 
for defining atomic charges [6, 7] still only try to preserve the total charge, and 
are therefore inadequate. In recent years, a score of methods was reported 
[1, 8-15] for generating these potentials from reduced representations of 
molecular charge distributions. They range from using simple Mulliken charges 
[8], via localized bond contributions [1, 9-12] to fitting charges to the expectation 
value of a molecular electrostatic potential [13-15]. For use in large molecules, 
or in calculations which have to be repeated many times (Monte Carlo, Molecular 
Dynamics), point charge models are preferable. 

In this paper we report a method which first uses a generalization of Mulliken's 
approach, after which a modification of Claverie's method is applied. This 
modification is chosen in order to make the method "automatic", i.e. no external 
specification of bonded atoms is necessary. The general idea of this modification 
leaves several possibilities to construct a population analysis. From experience 
on a large number of molecules we ultimately chose the form presented in the 
next section. As criterion for the choice, we used the accuracy of the molecular 
potential generated by the point charges. Further much attention was paid to 
obtain a stable method in the sense that small changes in the geometry of the 
molecule produce no discontinuous jumps in the point charges generated. 

2. Method 

The expectation value of any one-electron property in an (atomic) basis {X} can 
be written as 

(A) = ~ D,iA ~, =-E A,i (1) 

with D,j an element of the density matrix [16] in the basis used, and 

A~, = (x~IA IX,). (2) 

Since the density matrix is used, Eq. (1) applies to any type of wave function 
expressed in a finite basis set. The summations over i and f may be contracted 
such that we are left with smaller sums over orbital (usually atomic) centres: 

(A) = E A,~, (3a) 
m , n  
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with 

i o n n  ] o n m  

This sum over "one-cent re"  and 
further to "net  atomic contributions" 
"Mulliken contraction".  

(..4) = 2 A .  
t l  

A .  = Y~ Am.. 
m 

(3b) 

"overlap" contributions can be contracted 
by the method which may be called 

(3c) 

(3d) 

Note that Am~ = A.m and that Am. is added to An and Anm to Am and thus the 
overlap value Am. +Anm is divided equally between the centres involved. 

The first step in our method is the construction of the net atomic contributions, 
On and P. ,  to the total electronic charge and dipole moment,  from the matrix 
elements: 

o~i = -<~i lx j> Pl~ = -<x i l r lx j> ,  (4) 

Next the nuclear charge Zn is added to Q~ and Z~r~ to P~ to obtain gross atomic 
charges and dipole moments. This procedure gave the most satisfying results 
but for the fol lowing treatment it is immaterial whether the Q and P elements 
are on orbital basis, or contracted either to one-centre and overlap or to gross 
atomic contributions, or whether the nuclear contributions are added before or 
after the next step. But the results do depend on the method of contraction. In 
the following we will assume the method given above which is the strongest 
contraction of all. 

The first essential element in our analysis is that, apart from Q, also P is 
contracted. The second is that the local, one-centre dipoles are each redistributed 
over neighbouring centres such that the dipoles are represented by point charges 
only. Our procedure is reminiscent of Claverie's but it is more general. Claverie 
represents his one-centre dipoles on an atom by point charges on that atom and 
the ones bound to it. We propose to distribute such a dipole over all atoms in 
the molecule, thus omitting the determination of which atoms are bound. By 
suitable choice of a weighting function the charge will practically only be dis- 
tributed over the nearest neighbours. The method does not rest on very deep 
theoretical foundations. It is an attempt to find a general mathematical expression 
for the intuitions we have about the various special cases occurring in population 
analysis. 

Here  we will first derive the most general method of representing any charge 
distribution by point charges, preserving both monopole and dipole, because 
the method is instructive. 

Consider an arbitrary one-centre or overlap charge distribution p ~ ,  with 
monopole Qm. and dipole moment  Pro.. This distribution may be represented 
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by point charges qk on the atomic centres k of the molecule, such that its charge 
and dipole moment are preserved. Suppressing the indices m and n we require 

E q~ = O Y r~/~ = P (5) 
k k 

where qk is the part of the charge assigned to atom k. In general, Eq. (5) can 
be satisfied in many ways. We use this freedom to take the smallest possible 
charges, placed on the nearest atoms, compatible with Eq. (5). This is achieved 
by minimizing 

Z q 2 / 2 W k .  (6) 
k 

Here, wk is a weighting function which decreases rapidly with the distance 
between atom k and the charge distribution. The form of Eq. (6) ensures that 
all charges are minimized, but especially for atoms with low wk, i.e. for distant 
atoms. Combining Eqs. (5) and (6) and differentiating with respect to the qk, 
we have 

q k /  Wk -- a -- r*k13 = 0 

or 
qk = wk(a + r~ 13) (7) 

with a and 13 Langrangian multipliers. We define 

W - 2 wk  ; ( a )  - F, W k a k / W  
k k 

and solve for a and 13. 

O =Y~qk = 2  wk(a + r~,13) 
k k 

= Wa +<r)+WI3 (8a) 

P = 2 rkqk = Y~ wkrk (0~ + r+k [~) 
k k 

= (r)  W a  + (rr  ~) W 13. (8b) 

Hence, 

W a  = O - (r) + W13 (8c) 

W13 = [(rr +) - ( r ) ( r ) + ] - ~ ( P  - O ( r ) )  (8d)  

from which follows 

qk = ( W j  W ) { Q  + (rk - ( r ) ) t V - l ( P  - O(r))} (9) 

where ~/is the positive semi-definite matrix in square brackets in Eq. (8d). In 
practice ~/may be (nearly) singular. This problem is attacked by transforming 
to coordinates which diagonalize the tensor ~/ and which, for simplicity, have 
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<r) as the origin. Then 

Wk _r,k+ )e,]  (10) qk = ~ [ 0  (~ 'b-' ~_, 

with a, b, c the eigenvalues of ~, and P' = P -  Q(r>. 

According to Eq. (10), Q is simply redistributed over all atoms with distribution 
function wk. The tensor ~/ " looks" in which direction P '  can be most easily 
constructed. If there are many atoms with high weights in direction " a " ,  the 
eigenvalue, a, will be large and a -1 small. This means that P'a can be constructed 
by putting small charges on these atoms. If, in contrast, there are only few atoms 
of sufficient weight in some direction, " b "  say, the corresponding eigenvalue, b, 
will be small, and P~ will be constructed with relatively large charges. 

Hence, ~/is (nearly) singular when it is impossible (or difficult) to construct a 
component  of P '  in a particular direction. When a molecule is planar, this will 
occur in the direction perpendicular to the plane. It also occurs when in some 
direction there are only nuclei with small weights, indicating that they are far 
away from the distribution at hand. Then the molecule is locally planar or linear. 
In either case, most likely the corresponding component  of P '  will be small, and 
one would rather discard its contribution than reproduce it by using excessively 
large charges - in the case of a (nearly) planar molecule - or by putting charges 
on distant nuclei. One could neglect such components by simply putting a-1 to 
zero when a is small compared to the largest eigenvalue. However,  in order to 
avoid discontinuities in the charges, for example when a molecule is deformed 
from planar to just non-planar, it is better  to use the smooth function 

a - l ~ ( a + A ( c + A ) )  -1 { a = a , b , c }  (11) 

where c is the largest eigenvalue, and A is a small positive number. This means 
that we deliberately introduce a small error in order to keep the method 
numerically stable. In practice, we always use A = 10 -5. 

3. The Weighting Function 

The weighting function, Wk, measures the relative importance of atom k for 
charge distribution (m, n). A natural choice for wk follows from Eq. (9). Accord- 
ing to this equation, Q is distributed over the nuclei using Wk as the distribution 
function. Also the charges representing the dipole moment  P '  are distributed 
according to wk. In order to make the charge distribution qk resemble the 
distribution p,, , ,  wk should have about the same shape and width as p. However,  
there is no sense in trying to make a really " t rue"  representation of a continuous 
distribution by the discrete point charges. Therefore  we took a reasonable guess 
for the shape and width of wk : 

wk exp[--Irk 2 2 = - r , . ~ l  / d , , . d  (12) 

i.e. a gaussian function centred in r . , .  and with width din.. For  one-centre 
distributions (n, n) we might take rn. = r .  and d . .  proportional to the nearest 
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neighbour distance. For overlap distributions (m,n) we might take r,~n = 
(rm + r~)/2 and d,,~ proportional to [rm - r ,  I. The proportionality constant should 
be of the order of unity. Then one-centre distributions will practically be dis- 
tributed over the nearest neighbours only and two-centre distributions over the 
two nuclei involved. This distribution seems reasonable, at least when the basisset 
does not contain extremely diffuse functions extending over many centres. Thus  
the method applied to overlap distributions gives essentially the same results as 
other dipole preserving methods [3, 4] and the one-centre distributions are 
treated in about the same way as in Claverie's method [5]. 

We chose the exact value of the proportionality factor for dmn and d~ by 
inspection of the charges obtained and of the error in the electrostatic potential 
of the molecule generated by these charges. The potential was chosen because 
generating potentials was one of our aims, and also because the potential is the 
most physical, and therefore least arbitrary, criterion. We also compared our 
charges to potential derived charges (PD). These charges minimize the sum, 
over a set of grid points of the squares of the differences between the expectation 
value of the potential and the potential calculated from the point charges. The 
method used was that of Cox and Williams [15] which constrains the total charge 
to be equal to the molecular charge. A strong argument in favour of PD is that 
it would be the exact method if the charge density could be written as the sum 
of spherical distributions centred at  the nuclei. In general this is not possible 
and the PD method is somewhat unstable because it may try to describe small 
non spherical distributions by relatively large atomic charges. Therefore PD 
charges must not be taken too absolutely. 

4. Calculations 

Using the general method for representing any charge distribution p by point 
charges qk, in the neighbourhood of p, and preserving charge and dipole moment, 
we have studied the results obtained when the method was applied after various 
stages of contraction of charge distributions and various values of the proportion- 
ality factor for dmn and dnn. As a measure for the relative errors in the potential 
(V m~ generated by Mulliken charges (M), by the monopole and dipole 
preserving charges (MD), and by the potential derived charges (PD), we used 

where V is the expectation value for the potential. We used a rectangular grid 
spaced 3 bohr, from which we took the points with a distance between 4 and 
7 bohr to the nearest atom in the molecule. The PD charges minimize S. Typical 
values for S are 2-10% for the PD charges, and 20-50% for M charges (Table 
1). The MD charges were generally better than M by a factor of ~2 except for 
the small molecules without dipole moment (CH4, C2H2, C2H4, B2H6) which 
had S values of 100-200%. These molecules often had the wrong sign for their 
charges. The H atoms were negatively charged. The same effect occurred in 
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CH3 and CH2 groups in the larger dipolar molecules, but there it did not show 
up clearly in the potential because there the potential was governed largely by 
the dipole moment (for very large molecules by the local dipole moments of 
their parts) which was reproduced within 1 per mille. The fact that in small 
molecules without dipole moment MD is not automatically better than M can 
be understood if one considers CH4. In this molecule the restriction to conserve 
the dipole moment does not determine the charges. One may take any amount 
of charge from the central C atom and divide it equally among the surrounding 
H atoms without changing the dipole (or even the quadrupole). Only octupole 
conservation will determine the charges uniquely. The same argument can be 
applied to any tetrahedral (or triangular) part of a large molecule. If the charges 
are not uniquely determined by dipole conservation (as they are in e.g. HF, H20 
and NH3), they are determined, somewhat arbitrarily, by the method of contrac- 
tion and by the choice for the weighting function. This arbitrariness is not fatal 
however. In Mulliken's analysis only the monopole is conserved exactly, but 
higher poles can be reproduced roughly if the constituting charge distributions 
are skillfully assigned to "appropriate" atoms. Going one order higher, our 
method additionally preserves the total dipole but we have to put in some skill 
and intuition to obtain realistic atomic charges which roughly preserve higher 
poles. 

While experimenting with the MD method it appeared that it was hard to improve 
on Mulliken's method if one looks at the signs and the rough magnitudes of the 
charges of individual atoms. Thus, even though the fifty-fifty distribution of 
overlap populations looks arbitrary, it has its virtues. The good properties of 
Mulliken's analysis suggested to us to follow it as closely as possible and to use 
the MD method only at the latest moment as a correction to the Mulliken 
analysis. If it is true that the M charges are reasonable, then this correction is 
expected to be small and the MD charges will be very similar to M charges. 

Indeed this procedure proved to be the best of the various versions we have 
tried. It is defined by the following steps: 

1. use Mulliken contraction for overlap and dipole moment matrix elements, 
cf. Eq. (3c). This gives one-centre monopoles and dipoles Qk and Pk. 
2. add nuclear terms Zk to Qk and Zkrk to Pk. Now the Qk are the Mulliken 
gross charges. The Pk may be called gross dipoles. 
3. represent Pn by point charges on the atoms k and add these to Qk. Here the 
method of the previous section is used with Q in Eq. (5) equal to zero and 
P =Pn, and with dnn in Eq. (12) equal to the distance to the nearest neighbour 
of nucleus n, i.e. the proportionality factor is unity. This factor gave about the 
best fit to the potential. 

The MD charges thus obtained for the small molecules are displayed in Table 
1. Table 2 gives a comparison of the errors in the potential for the three methods 
for a number of molecules we happened to do research on. For MD the typical 
error is 5-20% and thus it is about three times better than M. The largest error 
occurs in B2H6. This molecule has an interesting potential because it cannot be 
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Table 1. Atomic net charges (• 1000) from a Roos-Siegbahn basis (RS) contracted 
to double zeta [17]. For hydrogen 3s basis of Jonkman et al. [18] contracted to 
(21). M =  Mulliken charges, MD = monopole and dipole preserving charges (this 
work), PD =potential derived charges. S = relative error in potential (xl00) cf. 
Eq. (13). Geometries from Ref. [21] 

Molecule Atom M MD PD 

CH4 C -705  -707  -567  
H 176 177 142 
S 26 26 10 

C2Hz C -294  -445  -287  
H 294 445 287 
S 3.2 55 2.2 

C2H4 C -380  -365  -348  
H 190 183 174 
S 28 27 26 

CO2 C 887 917 1110 
O -444  -458  -555  
S 20 18 2.5 

B2H6 B - 82  - 15  -879  
H 58 2 231 
H(bridge) - 34  11 416 
S 127 97 48 

CH3OH C -175  - 9 2  361 
O ' -683  -694  -767  
H (eclipsed) 191 153 25 
H (staggered) 157 81 - 3 4  
H (hydroxyl) 352 471 449 
S 44 10 7.6 

CH3CN C (methyl) -378  -303  -708  
C (nitril) - 78  143 534 
N -290  -327  -514  
H 249 162 229 
S 55 19 2.9 

CHOOH C 564 619 854 
O (hydroxyl) -519  -526  -619  
O -648  -659  -755  
H 218 89 18 
H (hydroxyl) 385 477 502 
S 60 13 8.0 

HCONH2 C 547 613 749 
N -819  -732  -935  
O -570  -590  -627  
H (carbon) 176 27 5 
H (trans) 331 329 384 
H (cis) 336 354 424 
S 31 5.9 4.8 

HzCO C 111 134 352 
O -464  -379  -440  
H 177 122 44 
S 30 9.6 7.1 
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Table 2. Error in potential (S) for some large molecules, the Heptacain 
H § is protonated at N15 (Fig. 1). (Ala)n means n alanines in the 
helical conformation, cf. [22, 23]. RS basis (cf. Table 1), except (Ala)n 
which is in a minimal basis [20] 

M MD PD 

Heptacain 191 37 6.5 
Heptacain H + 19 3.0 0.6 
PO4(CH3)2 5.8 1.2 0.7 
PO4(CH3)2H 40 5.6 3.3 
HN(CH3)~- 7.4 0.6 0.3 
N(CH3)3 66 19 13 
PO4(CH3)2HN(CH3)3 36 5.0 2.7 
(Ala)2 26 9.7 3.9 
(Ala)3 24 8.5 3.0 
(Ala)4 22 8.8 2.2 
(Ala)5 19 8.3 1.6 
(Ala)6 18 7.8 1.3 
(Ala)7 17 7.6 1.2 

Table 3. Charges (• in 112-(2 methoxy-phenylcarbamoyl)ethyl]piperidine (heptacain, cf. Fig. I). 
RS-basis (cf. Table 1) 

Atom M MD PD Atom M MD PD 

Ca -180  -154  29 H13 219 115 135 
C2 -223  -190  -401  H13 209 44 91 
C3 -260  -254  -547  C14 --85 41 94 
C4 364 459 659 H14 169 26 30 
C5 -185  -186  - 4 0  H14 170 31 33 
C6 142 233 - 8 6  N15 -691 -340  -561 
HI 216 107 132 C16 -140  31 3 
H2 217 125 197 H16 206 44 92 
H3 220 146 217 H16 161 62 94 
H5 327 172 199 Ca7 -388  -191  -244  
07 - 7 5 9 .  -529  - 5 0 l  H17 189 30 71 
Cs -117  - 2 4  25 H17 206 121 122 
Hs 196 100 106 Cls -398  -163  - 2 4  
Hs 175 95 74 His 185 118 51 
Hs 175 97 76 His 195 53 31 
N9 -826  -778  -655  C19 -386  -189  -154  
H 9 308 368 333 HI9 205 121 90 
Cao 1067 1131 1138 H19 189 29 40 
Oll  -621 -691  -716  Czo -145  30 73 
O12 -656  -477  -489  H2o 163 65 50 
C13 - 8  139 73 H2o 193 35 63 

error: S 191 37 6.5 
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16 17 

N -- CO - C Ho--C Ho--N~ 

HI ,o,~ ,3 - ~,, "-- \CHTCHo'~,CH2 
/ 0  7 20 z I~ L 

~ H3  

Fig. 1. Structure of l[2-(2-methoxy-phenylcarbamoyl) ethyl] piperidine (heptacain) 

fitted accurately by point charges on the atoms, so the failure of M and MD is 
not surprising, nor is the great difference between the PD and the M and MD 
charges. The same argument can be applied to C2H4 which also has a potential 
that is hard to fit. In C2H4 however, the M and MD charges are nearly optimal, 
which may be fortuitous. The MD method is least convincing in the case of C2H2 
where no definite reason can be found for the bad performance, whereas Mulliken 
is very good. Maybe C2H2 is just an exception or maybe the triple bond causes 
the trouble. 

The next worse case is heptacain [24] with an error of 37%, but here M is still 
much worse. It is surprising that the individual M charges do not compare badly 
to the PD charges (Table 3), but that the potential they generate on our grid 
does not look in the least like the true potential. Large areas, with large absolute 
potential, have the wrong sign of the potential and in other large areas the 
potential is overestimated by a factor of two. The improvement given by MD 
is striking. Almost everywhere the sign is correct and in large areas the magnitude 
is accurate within a few per cent. But in a few regions, which all have a negative 
potential, the potential is underestimated by a factor of up to two. These are 
the regions below and above the aromatic ring and between O12 and N15 (Fig. 
1). The chain between O12 and N15 is bent such that these atoms are rather 
close. It is hard to attribute the errors in the potential to particular atoms, but 
inspection of the errors seems to support the chemical intuition that the 
�9 r-electron system of the aromatic ring and the lone pairs of O and N atoms 
give excessive negative potentials which are not represented by MD. 

Table 4 contains some information on basisset effects. We calculated formamide 
in three basissets. In making comparisons we must keep in mind that part of 
the basisset effects are real, because the charge densities and the potentials are 
different in different basissets. We assume that the changes in the PD charges 
are the best measure for the real effects. In Table 4 the changes in the atomic 
charges with the basisset are smallest for PD and largest for M. MD is about 
halfway between them. Also the trends in MD and PD charges are more alike 
than those in M and PD charges. These facts suggest that MD shows less artificial 
basisset dependency than M. 

As an illustration of the behaviour of the three methods in large molecules the 
charges for the 3- and 4-peptide a-helices of polyalanine are given in Table 5. 



General Population Analysis 

Table 4. Basis set effects on charges in formamide 
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Basis MB a RS b RS *c 

M MD PD M MD PD M MD PD 

H 197 -2 -31 176 27 5 25 -25 -10 
C 315 499 651 547 613 749 473 436 534 
O -426 -475 -500 -570 -590 -627 -457 -494 -513 
N -795 -632 -906 -819 -732 -935 -385 -401 -736 
H(cis) 378 326 410 336 354 424 167 215 354 
H(trans) 367 283 3")7 331 329 384 177 269 371 

d 4.12 3.67 3.66 4.21 4.41 4.41 3.18 4.25 4.25 
S e 33 10 8.3 31 5.9 4.8 30 8.2 6.0 

Minimal basis according to Mehler and Paul [20]. 
b Roos-Siegbahn basis (cf. Table 1). 

RS plus one polarization function per atom [19]. 
a Dipole moment in Debye. 
e Relative error in potential: Eq. (13). 

The charges are interesting because they may be used for the calculation of 
Coulomb interactions in proteins. Again a comparison of individual M- and 
MD-charges with PD charges is not particularly unfavourable for M. It is the 
better distribution of charge on a larger scale which gives the better MD potential. 
Table 5 also gives an impression of the relative instability of PD charges. More 
or less equivalent atoms in one molecule show more variations in their PD 
charges than in M and MD charges. 

5. Conclusions 

We present a new, general and efficient method for obtaining charges from 
molecular wave functions. The method preserves the dipole moment  and, in 
larger molecules tends to preserve higher moments because of the representation 
of local dipoles. The general method can lead to a variety of charge analyses 
but the best results are obtained by a version which is as close as possible to 
the Mulliken analysis. The potentials obtained are about three times as accurate 
as those from Mulliken charges and also the basisset dependency is smaller. New 
elements of the method are the Mulliken contraction of the dipole matrix 
elements and the automated method of representing dipole moments by atomic 
charges. 

The method is superior to Mulliken in the sense that the potentials generated 
by the charges and hence the Coulomb interactions between molecules are better. 
However, as a tool to analyse the numerical results of calculations the Mulliken 
charges have the advantage that they are more simply related to the overlap 
and density matrix elements, which makes interpretation easier. In many cases 
the two methods will give complementary information, and because they are 
both computationally very fast they may be generated as standard output of 
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L C A O  ca lcu la t ions .  T h e  p r e s e n t  m e t h o d  is s i m p l e r  a n d  m u c h  fas t e r  t h a n  t h e  

g e n e r a t i o n  of  p o t e n t i a l  d e r i v e d  cha rges ,  w h i c h  also suffers  f r o m  s o m e  ins tab i l i ty  

aga ins t  sma l l  c h a n g e s  in g e o m e t r y .  
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